

Hashem Bukhamsin, Angelo Edge, Roger Guiel, Dan Verne

October 30, 2013

Outline

Ę

- Project Updates
- Design Concepts
- Decision Matrix Weighting
- Decision Matrix with Chosen Design
- Team Schedule
- Recap

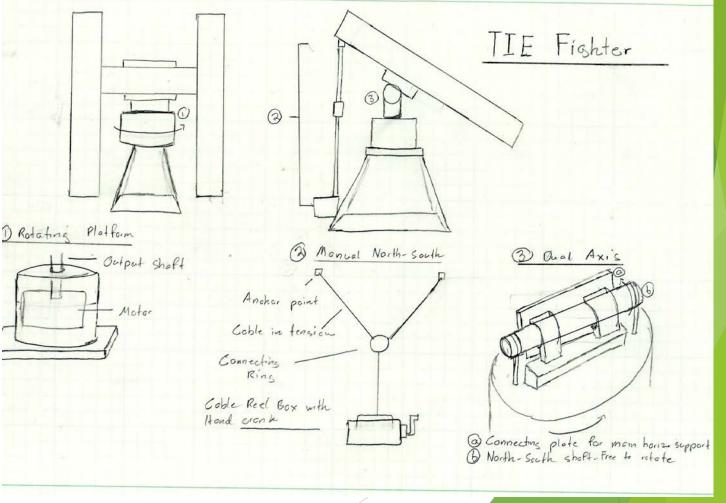
Project Updates

- Project is now only movement of solar panels, not actual solar tracking.
- Competition early 2014 with Electrical Engineering team.

Goal Statement Re-evaluation

- Previous Goal
 - "Design a system that maximizes the amount of sun being absorbed by a solar panel, as well as display power output."
- New Goal Statement
 - "Design a system that maximizes amount of sun being absorbed while minimizing the cost of operation and maximizing the reliability."

Design Concepts


- Tie Fighter
 - Dual axis
- Nickel Titanium
 - Single axis using nitinol
- Tabletop
 - Strong weight support
- Sun Flower
 - Dual axis, very accurate
- Direct Rotation
 - Dual axis, manual

TIE Fighter

- Uses motor for East- West tracking
- North- South are manual via a hand crank
 - Cables anchored to top of structure
 - Lengthen or retract to change angle
- Advantages

Ę

- Efficient
- Inexpensive
- Disadvantages
 - Stability concerns
 - Area
 - Reliability

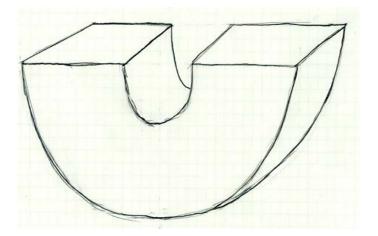
6

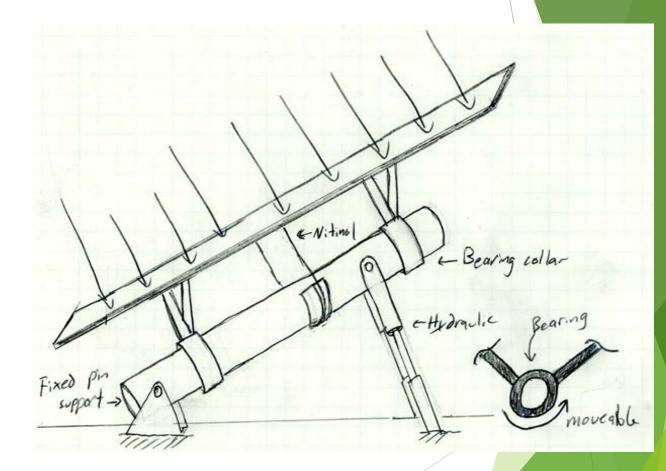
Nickel Titanium

- Uses Nitinol, a shape memory alloy.
- Disadvantages

Ę

- Temperature dependent
- Movement is not very precise
- Advantages
 - Low energy usage
 - Very simple design
 - Removes need for electrical motor

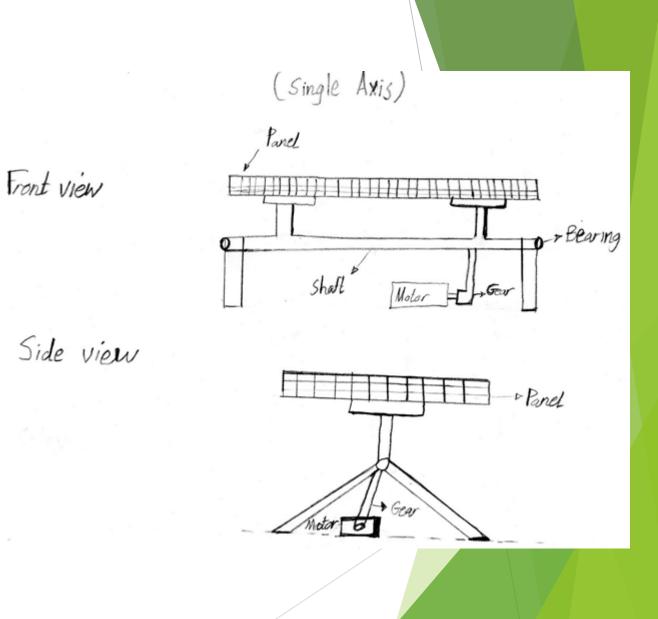



Photo via FlexMet

Nickel Titanium

F

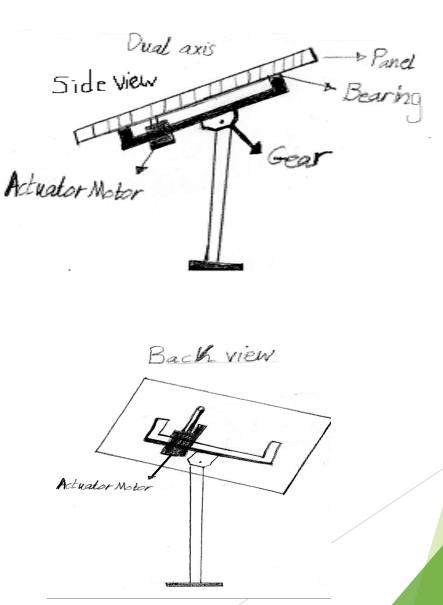
• Key is the half ellipse that provides the maximum rotational movement with the smallest linear movement.



Tabletop

Ē

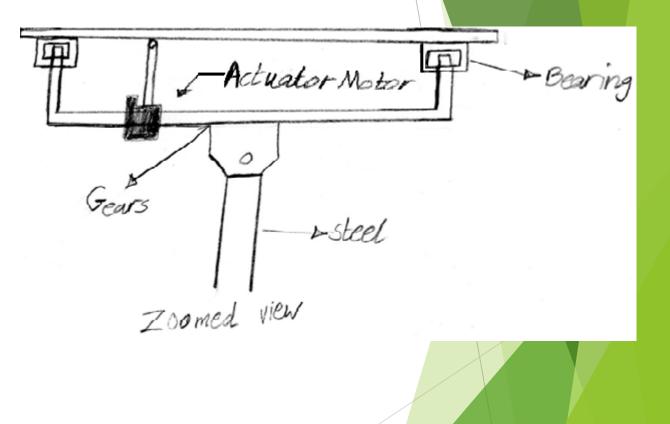
- Single axis, motor based, geared motor to use less power.
- Advantages :
 - Can have multiple panels
 - High reliability (very few parts)
 - Ease of operation (parts easily accessible)
- Disadvantages :
 - One degree of freedom
 - Poor space usage
 - Requires a powerful motor



Sun Flower

• Dual axis

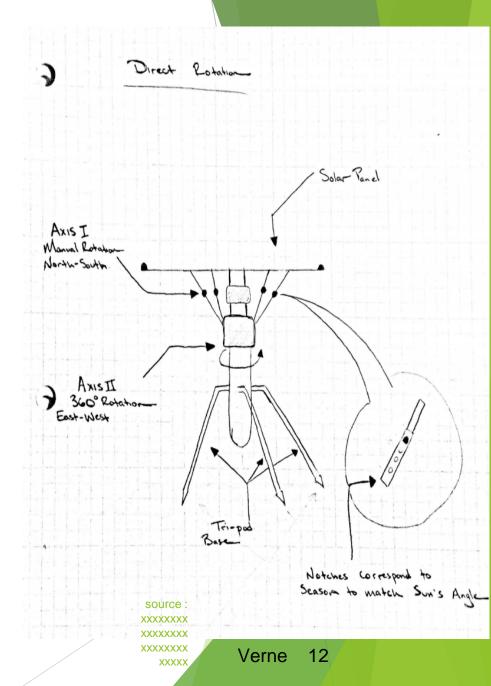
Ē


- Motor based rotation for the E-W directions
- Gear based rotation for the N-S directions
- Advantages :
 - less space occupied
 - Accuracy of up to .5°
 - Portable
 - North-south and east-west movement, allow more energy to be generated

Sun Flower

Ę

- Disadvantages :
 - Maintenance is slightly more complicated due to usage of more parts
 - Only works for one solar panel
 - Cannot withstand severe weather conditions



Direct Rotation

- East to West rotation is directly linked to a motor, allowing for 360° movement
- North and South are manually operated. Each notch corresponds to a specific month to match the sun's angle.
- Advantages:

- Dual Axis
- Cost Effective
- Ease of Manufacturing
- Small Area
- Disadvantages:
 - Manual Intervention Required

Decision Criteria

Supported Weight: Weight (pounds) that the structure can support.

Cost: \$ for parts and installation.

Efficiency: Energy generated.

Area: Space needed to operate tracking structure.

Reliability: System consistency, incorporates maintenance (life of parts).

Decision Criteria and Weighting

Ę

Weight Criteria												
	Structure Weight (lbs)	Supported Weight (Ibs)	Cost (\$)	Efficiency (%)	Area (ft*ft)	Reliability (%)	Criterion Weight					
Structure Weight	X	0	0	0	0	0	0					
Supported Weight	1	X	0	0	1	0	0.14					
Cost	1	1	X	1	1	0	0.29					
Efficiency	1	1	0	X	1	0	0.21					
Area	1	0	0	0	X	0	0.07					
Reliability	1	1	0	1	1	X	0.29					

Decision Matrix

Design Decision Matrix											
Scale: 0-1-2-3-4	Criterion Weight	Nickel Titanium	Tie Fighter	Table Top	Direct Rotation	Sun Flower					
Supported Weight (Ibs)	0.14	3	2	4	3	1					
Cost (S)	0.29	4	3	3	3	1					
Efficiency (%)	0.21	2	4	2	4	4					
Area (ft*ft)	0.07	3	2	2	3	4					
Reliability (%)	0.29	4	3	3	3	2					
Total	1	3.37	3	2.86	3.21	2.13					

Chosen Design: Ni-Ti

Team Schedule Update

	Name	Begin date	End date	Week 41	Veek 42 10/13/13	Week 43 10/20/13	Week 44	Week 45	Veek 46	Week 47	Week 48	Veek 49 12/1/13	Week 50 12/8/13	Week 51 12/15/13	Week 52
9 0	Preliminary Design	9/30/13	10/24/13		for for to	TOTEOTIO	(Orerrito)	11107-10	11/10/10	1 In Tri To	1112 1110	14/1/10	12/0/10	12/10/10	- LALLET IV
	Needs / Requirments	9/30/13	10/1/13												
	Background Research	10/2/13	10/7/13	=											
	SOTA	10/8/13	10/14/13												-
	Design Slections	10/15/13	10/21/13												
	Narrow Design Choices	10/22/13	10/24/13												
9 e	Analysis	10/25/13	11/12/13						-						
	Engineering Analysis	10/25/13	11/4/13					1							-
	Cost Analysis	11/5/13	11/7/13												
	Program	11/8/13	11/12/13												
> 0	Prototype	11/13/13	11/25/13						_						
0	Finite Design	11/26/13	11/28/13												
H 0	Presentation / Reports	10/9/13	12/3/13												

Recap

- Project has been specified to only the movement of the solar panel, not tracking the sun.
- Cost and efficiency are the highest weighted criteria due to the preferred constraints on the project.
- The chosen design incorporates Nitinol to reduce usage costs, and is currently only a single axis tracker.
- The team is already starting the basic engineering analysis of the design.

Questions?

References

- [1]http://www.pvtech.org/news/germany_breaks_monthly_solar_generation_record_in_july
- [2]http://nau.edu/Sustainability-360/Sustainability-Experts/Thomas-Acker/
- [3]http://nau.edu/CEFNS/Centers-Institutes/Sustainable-EnergySolutions/About/
- [4] http://stores.ebay.com/flexmet-ibatteries/memory-metal-Nitinol-/_i.html?_fsub=2125728017
- [5]Hibbeler, Engineering Mechanics Dynamics, 13th ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2013, pp.1-736
- [6] Philpot, Mechanics of Materials, 2nd ed. Rolla Missouri, 2011, pp.1-767
- [7]McGraw-Hill, Shingley's Mechanical Engineering Design, 8th ed. United States, 2006, pp.1-1059